A Brief Historical Look at B Physics using proton anti-proton collisions and selected recent results from Tevatron Nigel Lockyer University of Pennsylvania 50 Years of Anti-protons Anniversary Symposium October 28-29th, 2005 Lawrence Berkeley National Laboratory (LBNL) #### Hadron Colliders are Discovery Machines # But that perception needed to be expanded after the Tevatron Now "Precision B physics" ## UA1 @ CERN #### Large Beauty Production at UA1 (J/ψ Clean) $\sigma(pp->bb+X)=19.3\pm7~(exp)\pm9(th)~\mu b$ Physics Letters B Volume 256 Feb. 28 1991 #### CDF @ Fermilab Run1 - First Fully Reconstructed B Meson in Hadron Collider - •First Hint of CP Violation in B System (looked like SM) ## First Fully Reconstructed B meson in a proton antiproton Collider-big surprise! This plot started the big push to do B Physics with Exclusive Decays-goal was to acquire a large sample of B \rightarrow J/ ψ K_s decays, to do CP violation studies but that proved to be harder Phys. Rev. Lett. 1992 June 8;68(23):3403 Recorded 2.6 pb⁻¹ of data ~1000 J/ ψ 's & 14 B mesons reconstructed FIG. 2. $\mu^+\mu^-K^{\pm}$ mass distribution after all cuts. The histogram is the data and the solid curve is a fit by a Gaussian signal (with the width fixed to 0.012 GeV/ c^2) plus linear background. $$\sigma(pp -> bX)$$; $P_t > 11.5 \text{ GeV/c } |\eta| < 1 = 6.1 \pm 1.9 \pm 2.4 \text{ } \mu b$ ## CDF & DO Today #### Thousands of Reconstructed B Mesons #### How was this Possible? - Large B total cross section ~50 μb at Tevatron energies - Big fraction of total inelastic cross section (~1:1000) - Soft production (peaked at B mass) and hence small number of additional tracks in event (CLEAN events!) - Few extra tracks in cone around B meson another surprise - Triggered on 3 GeV/c di-muons in central region (thin steel) - Calorimetry less important initially - Large precision tracking detectors developed in high B fields - Long B lifetime led to high precision silicon detectors - Unfortunately efficiency low, only ~5% events reconstructable - Zoo of b hadrons: B^0 , B^+ , B_s , B_c , Λ_b , Ξ_b , B^{**} - 30% acceptance for "other" B (mixing and CP possible) #### Basics of the CP Violation Measurement - Reconstruct the CP eigenstate B→J/ψ K_s - Use the "other B" to identify B or anti-B meson at production - Three tag techniques used (want high tagging efficiency ε): - Soft lepton tag (from mixing analysis) - Jet charge tag (from mixing analysis) - Same-side tag (from mixing analysis) - Wrong tags dilute statistical power (hard in hadron machine) - Parametrized as D=correct tags-incorrect tags/sum - εD² 20% in e⁺e⁻ and at best a few percent CDF - In a hadron collider b-quark pairs are produced as two incoherent meson states - Lifetime measurements verify distance scale - Asymmetry can be measured as either a time-dependent (statistically more powerful) or time-integrated quantity. #### Large B \rightarrow J/ ψ K_s Tagged Sample (CP Eigenstate) svents 100 80 20 -20 -10 10 $(M_{uuxx}-M_B)/\sigma_M$ Silicon ~200 events No Silicon~ 200 events 110 pb⁻¹ (few percent εD^{2}) Phys. Rev. D61 072005(2000) #### CDF Sees First Hint of Large CP in B Decays Sin 2β =0.79 \pm 0.39(stat) \pm 0.16(syst.) #### CDF and DO @ Fermilab Run II (2001→...) - Secondary Vertex Trigger (a first) - B Masses - B Lifetimes - Quantum mechanical Mixing - Flavor changing neutral current decays - Two body decays #### Superb Detectors #### Both detectors - Silicon microvertex detectors - Central tracking in Solenoid - High rate trigger/DAQ system - Calorimeter & muon systems - Require all-charged final states DØ fiber tracker installation #### CDF silicon detector installation #### DØ - Excellent muon ID & coverage - Excellent tracking acceptance #### CDF - Particle ID (TOF and dE/dx) - Excellent central tracking mass resolution - Dedicated secondary vertex trigger ## Silicon Vertex Trigger (CDF) Impact Parameter Resolution (35 \oplus 33) μ m SVT \oplus beam $\Rightarrow \sigma = 48 \mu$ m #### b hadron masses Systematics below 1 MeV for high statistics channels Best single measurements of *b*-hadron masses #### Lifetime Bs - $\quad D_s \! \to \! \varphi \pi$ - Overcome υ w/simulation $$r(B_s) = 1.420 \pm 0.043 \pm 0.057 \, ps$$ - CDF $B_s \rightarrow D_s \pi$ - $-\quad D_s\!\to \varphi\pi$ - Trigger Bias $$\tau(B_s) = 1.60 \pm 0.10 \pm 0.02 \, ps$$ ### B_c Lifetime from J/ψ e (new) $\tau(B_c) = 0.474 + 0.074/-0.066(stat.) \pm 0.033(syst) ps$ ## Λ_b Lifetime (new) τ =1.45 ± 0.13(stat) ± 0.02 (syst) ps Within 1.4σ of world's measurement and 0.8σ of HQET ALEPH (semi-leptonic) and CDF have similar precision ### B^0 (B \rightarrow J/ ψ Ks) Lifetime τ = 1.503 ± .05(stat) ± 0.016(syst) ps ## B Lifetime Summary(CDF&DO) | | Mode | CDF [ps] | DØ [ps] | HFAG 05 | |--------------------|---------|-------------------------|----------------------------------|-------------| | τ(B+) | J/ψ | 1.662±0.033±0.008 | | 1.653±0.010 | | | Ιυ | 1.653±0.029 ±0.032 | | | | | hadrons | 1.66±0.03±0.01 | | | | τ(B ⁰) | J/ψ | 1.539±0.051±0.008 | 1.473±0.051±0.023 | 1.528±0.009 | | | Ιυ | 1.473±0.036±0.054 | 1.547±0.023±0.020±0.017 † | | | | hadrons | 1.51±0.07±0.01 | | | | $\tau(B_s)$ | J/ψ | 1.369±0.100±0.009 | 1.444±0.094 ±0.020 | | | | Ιυ | 1.383±0.055+0.052-0.046 | 1.420±0.043 ±0.057 | 1.479±0.044 | | | hadrons | 1.60±0.10±0.02 | | | | $\tau(\Lambda_b)$ | J/ψ | 1.45±0.13±0.02 | 1.22+0.22-0.18 ±0.04 | 1.232±0.072 | B+ Belle 1.635 +/- 0.011+/-0.011 B⁰ BaBar and Belle (Best) 1.534+/-0.008+/-0.010 #### B_s Lifetime Difference $\Delta\Gamma$ - $B_s \rightarrow J/\psi \phi$ - B →VV, mixture of CP even/odd separate by angular analysis - Combine two-lifetime fit + angular $\rightarrow \Delta\Gamma_{\rm s} = \Gamma_{\rm H} \Gamma_{\rm l}$ - SM $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$ =0.12±0.06 (Dunietz, Fleischer & Nierste) - Indirect Measurement of ∆m_s $$\frac{\Delta\Gamma_s}{\Delta m_s}\Big|_{SM} = (3.7^{+0.8}_{-1.5}) \times 10^{-3}$$ $$\frac{\Delta\Gamma}{\Gamma} \left(D \emptyset 450 \ pb^{-1} \right) = 0.21_{-0.45}^{+0.33}$$ $$\frac{\Delta\Gamma}{\Gamma}$$ (CDF 240 pb^{-1}) = $0.65^{+0.25}_{-0.33} \pm 0.01$ ## B Mixing Measurement - Measure Asymmetry - Determine "time" of Decay: - σ_t = Proper lifetime resolution - Sort the mixed from unmixed via b charge at production and decay $$A_{\text{mix}}(t) = \frac{N_{\text{mix}}(t) - N_{\text{unmix}}(t)}{N_{\text{mix}}(t) + N_{\text{unmix}}(t)} \propto \cos \Delta mt$$ $$\operatorname{Re}(V_{ts}) \approx 0.040 > \operatorname{Re}(V_{td}) \approx 0.007$$ $$Sig(\Delta m) = \sqrt{\frac{S}{S+B}} e^{-(\Delta m \sigma_t)^2/2} \sqrt{\frac{S \varepsilon D^2}{2}}$$ - 1) Signal/noise - 2) vertex resolution or time resolution - 3) tagging efficiency and Dilution ## Calibration Flavor Tagging on Bd **CDF** D₀ - Know the right answer - Tests Fitting Mechanism - Calibrates Tagging - Much higher statistics $\Delta m_d = 0.503 \pm 0.063 \pm 0.015 \text{ ps}^{-1}$ $\epsilon D^2 = 1.55 \pm 0.16 \pm 0.05\%$ $\Delta m_d = 0.558 \pm 0.048 \text{ ps}^{-1}$ $\epsilon D^2 = 1.16 \pm 0.16\%$ Δm_d =0.510 \pm 0.006 ps⁻¹ (HFAG Winter05) ## Golden B_s Mixing Decay Modes Fully hadronic mode only possible because of CDF Vertex Trigger-critical for large mixing Silicon Vertex Trigger is a major technical advance ## New Additional Bs Mixing Mode (CDF) $B_s \rightarrow D_s 3\pi (D_s \rightarrow \phi \pi, K^{*0} K^-)$ ### New Bs Mixing Amplitude Scan Result •Use ~1100 fully reconstructed B_s decays Amplitude Scan Fourier Transform into Δm space only floating A A = 1 for true Δm , 0 else Limit $\equiv A+1.645\sigma_A = 1$ Sensitivity $\equiv 1.645\sigma_A = 1$ NIM A384(1997) p.491 ff. ## Current World B Mixing Knowledge - • Δm_d dominated by "B factories" - Designed specifically for this purpose - • Δm_s not accessible at B factories, have world ave. $e^+e^- \rightarrow Z \rightarrow bb$ - Limit from p - $p\overline{p} \to b\overline{b}X$ and ## B_s Mixing Results Summary | Source | $\Delta m_s > (95\%)$ | Sensitivity | |-----------------------|-----------------------|-----------------------| | DØ D _s lv | 5.0 ps ⁻¹ | 4.6 ps ⁻¹ | | CDF D _s Iv | 6.7 ps ⁻¹ | 10.4 ps ⁻¹ | | CDF D _s π | 0.0 ps ⁻¹ | 9.8 ps ⁻¹ | | CDF Comb. | 8.6 ps ⁻¹ | 13.0 ps ⁻¹ | | PDG 04 | 14.5 ps ⁻¹ | 18.1 ps ⁻¹ | | PDG 05⊕CDF05 | 16.6 ps ⁻¹ | 19.6 ps ⁻¹ | CDF B_s mixing measurement has significant impact on world limit ### B_s Sensitivity (LP05) $$B_{d,s}^0 \to \mu^+ \mu^-$$ #### BR($B_s \rightarrow \mu\mu$): Why are FCNC interesting? • BR(B_s $\rightarrow \mu\mu$) in the SM is $$BR(B_s \to \mu^+ \mu^-) = (3.4 \pm 0.5) \times 10^{-9}$$ **A. Buras Phys. Lett. B 566,115** - Can be enhanced by 10-100 in SUSY - Consistent with $\Delta a\mu$, and Ωcdm - Observable with ~2 fb-1 - Would imply light Higgs Mh~120 GeV ## Di-muon mass Spectrum at CDF #### Results D0 - Expected background:4.3± 1.2 - Observed: 4 #### **CDF and D0 Combined:** BR(B_s $$\rightarrow \mu\mu$$) < 1.2×10⁻⁷ @ 90% CL < 1.5×10⁻⁷ @ 95% CL BR(B_d $$\rightarrow \mu\mu$$) < 3.2×10⁻⁸ @ 90% CL < 4.0×10⁻⁸ @ 95% CL #### **CDF** - Expected background:1.5± 0.2 - Observed: 0 #### MSSM with Minimal SO(10) Soft SUSY Breaking Green region is the WMAP preferred region Blue dashed line is the Br(Bs \rightarrow µµ) contour Light blue region excluded by Bs \rightarrow µµ analysis tan(β)~50 constrained by unification of Yukawa couplings #### mSUGRA M0 vs M_{1/2} Dedes, Dreiner, Nierste, PRL 87(2001) 251804 • For m_h~115GeV implies $10^{-8} < Br(B_s \rightarrow \mu\mu) < 3 \times 10^{-7}$ Solid red = excluded by theory or experiment Dashed red line = light Higgs mass (m_h) Dashed green line = (δa_{μ})susy (in units of 10⁻¹⁰) Black line = Br($B_s \rightarrow \mu\mu$) #### **TEVATRON REACH on B_s→μμ** - Can push down to low 10⁻⁸ region - Modest improvement in sensitivity expected with new analyses #### mSUGRA Likelihood Scan Run II can exclude ~30% of currently allowed mSUGRA phase space $$B_{d,s}^{0} \rightarrow h^{+}h^{-}$$ ## $B \rightarrow h^+h^-$ Challenge is to separate signals Use dE/dx from drift chamber #### Results | parameter | fraction | yield | |-----------------------|----------------|--------------| | $B^0 \to \pi^+\pi^-$ | $(13 \pm 3)\%$ | 121 ± 27 | | $B^0 o K^+\pi^-$ | $(60 \pm 3)\%$ | 542 ± 30 | | $B_s^0 \to K^- \pi^+$ | $(0\pm3)\%$ | | | $B_s^0 \to K^+ K^-$ | $(26\pm3)\%$ | 236 ± 32 | ~900 evts/180 pb-1 in initial CDF data, taken with still non optimized detector/trigger. Now much better: ~2700 / 360 pb-1 ## Final results: B^0 _s sector $$\frac{f_s \cdot BR(B_s^0 \to K^+K^-)}{f_d \cdot BR(B^0 \to K^+\pi^-)} = 0.46 \pm 0.08 \text{ (stat.)} \pm 0.07 \text{ (syst.)}$$ $\underline{B^0}_{s} \to K^+ K^-$ decay established. BR ratio may favor large SU(3) breaking as predicted from sum rules (Khodjamirian et al. PRD68:114007, 2003). $$\frac{f_d \cdot BR(B^0 \to \pi^+ \pi^-)}{f_s \cdot BR(B^0_s \to K^+ K^-)} = 0.45 \pm 0.13 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$$ Allows first comparisons with Y(4S) and theory expectations, test of NP. $$\frac{f_s \cdot BR(B_s^0 \to K^- \pi^+)}{f_d \cdot BR(B^0 \to K^+ \pi^-)} < 0.08 @ 90\% C.L.$$ No evidence for $B_s^0 \to K\pi$, set a limit a factor ~40 better than PDG04. $$\frac{BR(B_s^0 \to \pi^+\pi^-)}{BR(B_s^0 \to K^+K^-)} < 0.05 @ 90\% C.L.$$ Great improvement on annihilation mode $B_s^0 \to \pi\pi$. A factor >100 below PDG04 (time-evolutions of $B_s^0 \to \pi\pi$ and $B_s^0 \to \kappa \kappa^+$ assumed the same). #### Final results: Bo sector $$A_{\mathsf{CP}} = \frac{N(\overline{B}^0 \to K^- \pi^+) - N(B^0 \to K^+ \pi^-)}{N(\overline{B}^0 \to K^- \pi^+) + N(B^0 \to K^+ \pi^-)} \quad = \quad -0.013 \pm 0.078 \; (stat.) \pm 0.012 \; (syst.)$$ A_{CP} compatible with *B*-factories, <u>systematic uncertainty comparable</u> as well, Babar statistic uncertainty ~30% better. With currently available data (3x statistics), we expect < 4.5% statistical uncertainty to be compared with current world best: 2.2% (Belle). $$\frac{BR(B^0 \to K^+K^-)}{BR(B^0 \to K^+\pi^-)} < 0.10 @ 90\% C.L.$$ Limit on pure annihilation/exchange mode $B^0 \to K^+K$. A factor ~2 above *B*-factories, expect much better performance on current sample. $$\frac{BR(B^0 \to \pi^+ \pi^-)}{BR(B^0 \to K^+ \pi^-)} = 0.21 \pm 0.05 \text{ (stat.)} \pm 0.03 \text{ (syst.)}$$ Consistent with B-factories. Valuable cross-check for other measurements. #### Conclusions - B Physics from Tevatron already impressive - An order of magnitude more data before completion - Looking forward to being main contributor to B_s limit and hopefully a measurement is possible (major effort) - Studies of very large samples of B→hh modes including CP (angle γ) - Pushing limits of B→μμ το ~ a few 10⁻⁸ (powerful probe of new physics) ### Acknowledgements - Thanks especially to: - Cheng-Ju Stephen Lin (B→μμ) - Mark Neubauer (Ab lifetime) - Ting Miao (Bc lifetime) - Doug Glenzinski (B→μμ) - Diego Tonelli (B→hh) - Matt Herndon convener - Christoph Paus Bs Mixing - Ilya Kravchenko Bs Mixing - Nuno Leonardo (B→hh) - Guillelmo Ceballas (Bs mixing) - Alberto Belloni (Bs mixing) - Stefano Giagu convener - Steve Nan (lifetimes and masses) And all my CDF Colleagues